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ABSTRACT

A fast algorithm for recovering profiles of density and Lame
parameters as functions of depth for the inverse seismic problem in an
elastic medium is obtained. The medium is probed with planar impulsive
P and SV waves at oblique incidence, and the medium velocity components
are measured at the surface. The interconversion of P and SV waves defines

reflection coefficients from which the medium parameter profiles are

obtained recursively. The algorithm works on a layer-stripping principle,
and is specified in both differential and recursive forms. A physical

interpretation of this procedure is given in terms of a lattice filter,
where the first reflections of the doangoing waves in each layer yield
the various reflection coefficients for that layer. A computer run of
the algorithm on the synthetic impulsive plane wave responses of a twenty-
layer medium shows that the algorithm -woriks satisfactorily.
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INTRODUCTION

A layered elastic medium with depth-dependent material parameters

is probed with impulsive plane waves at oblique incidence. The medium is

assumed to support the propagation of seismic waves, so that there is

continuing conversion between P waves and SV waves as the medium, with its

depth-varying parameters, is penetrated. The goal is to recover profiles

of the density p(z) and Lame parameters X (z) and p(z) as functions of

depth.

Previous work on this problem has yielded methods of solution that

are computationally arduous to implement. For example, Coen (1983) solved

this problem by employing solutions to the acoustic problem for the separate

cases of P and SV impulsive plane waves at--normal incidence, which are

decoupled for a layered medium, and of SH waves at oblique incidence.

This allowed the recovery of the parameter profiles by solving Marchenko

integral equations, but sidesteps the issue of P-SV mode conversions.

Blagoveschenskii (19671 exhibited several integral equations whose solutions

yielded the parameter profiles as functions of travel times, and by combining

the Gelfand-Levitan inverse scattering method with the solution of a

Volterra equation, Carroll and Santosa (1982) were able to recover the parameter

profiles as functions of depth. Baker (1982) solved the related problem of

reconstructing radially varying parameters by using spherical harmonics and

Marchenko integral equations. However, none ofthese methods can be considered

to be attractive from a practical, computational perspective.

Clarke (1983) and Shiva and Mendel (1983) have recently given algorithms

that utilize the layer-stripping principle employed by the algorithm given in

this paper. However, their algorithms are much more complicated than the
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present algorithm, since Clarke's algorithm requires the iterative solution

of an equation at each step, while Shiva and Mendel's algorithm requires the

solution of a cubic equation and a maximum-likeLihood estimation at each step.

The present algorithm, in contrast, is quite straightforward, since the

assumption of a continuous medium allows differential updates of the medium

parameters.

In this paper · we present a fast algorithm that recursively generates

the parameter profiles p(z), X(z) and p(z) as functions of depth. There

are no integral equations to solve; the computation is direct and only

involves simple operations. The algorithm works on a layer-stripping

principle that involves upgoing and downgoing P and SV waves and bears

some similarity to the Schur algorithm and the downward continuation

method which were used to solve the inverse acoustic problem in Yagle

and Levy (1983). and Bube and Burridge (1983), and other inverse scattering

problems in Dewilde, Fokkema and Widya (1981), Bruckstein, Levy and

Kailath (1983) and Yagle and Levy (1984).. The method of characteristics

which was used by Symes (1981), Santosa and Schwetlick (1982) and Sondhi

and Resnick (1983) to reconstruct the impedance of an acoustic medium

relies also on a similar layer-stripping technique.

The paper is organized as follows. The problem is set up in detail

in the next section. The algorithm is derived mathematically and exhibited

in the following two sections. The next section discusses what the algorithm

is doing and how it works with attention given to physical interpretations

of the quantities appearing in the algorithm. A final section presents



-3-

the results of a computer run of the algorithm, in which the algorithm

reconstructs a twenty-layer medium from its impulsive plane wave responses.

PROBLEM FORMULATION

We consider a layered elastic medium with depth-dependent density

p(z) and Lame parameters A(z) and p (z). The following experiment is

performed. An impulsive planar P wave is obliquely incident on the

medium. The horizontal and vertical velocities are measured at the

surface z=O as functions of time. The experiment is then repeated with

impulsive planar SV waves. The angles of incidence of the P and SV

plane waves with respect to the vertical are chosen (i.e. the point source

data is stacked) so that the horizontal ray parameter p is the same for

both experiments. Of course, the algorithm may be run concurrently with

many different values of p from a single point source experiment, the

updated medium parameters at each depth from each run averaged, and the averaged

values then used in the algorithms. This reduces the effect of noise in the data.

There is a choice for the boundary conditions at the surface (z=0)

of the medium. In the presentation of the algorithm a free

surface is assumed, so that the surface tractions T and T are both zero.
zx zz

Due to the vast difference in material parameters between the ground and

the air, this assumption is quite reasonable. However, the medium may also be

considered as being probed from an overlying homogeneous half-space in

which case the upgoing P and SV waves at the surface are constructed from the

velocities at the surface. Note that the assumption of planar source waves
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is often reasonable in practice, especially in the far field case (Aki

and Richards, 1980, p.123). Also note that the desired responses for P

and SV excitations could be obtained by an appropriate superposition of

the responses to a P-wave source and to a mixed, P- and SV-wave source.

Since we are assuming an elastic medium, there will be continuous

conversion between P-type and SV-type seismic waves as the inhomogeneous

medium is penetrated. This makes the problem far more complex than the

acoustic problem, for which a fast algorithm solution has already been

found (Yagle and Levy, 1983). There may also be propagation of SH

waves, if the impulsive SV-wave source is not completely polarized. Since

any SH waves will be completely decoupled from the P and SV waves, these

waves will not be considered further in this paper. It is the complexity

of wave propagation in the elastic medium that allows the recovery of all three

medium parameter profiles as functions of depth instead of travel time.

We now define the following quantities:

1/2
a(zl = (..((z) + 2p(z))/p(z)) = local P-wave velocity (la)

B(zl = (P(z)/p(z))1 2 = local S-wave velocity (lb)

p = horizontal ray parameter (lc)

sin 0 (z) = a(z)p sine of local angle between P-wave
ray and vertical (ld)

sin 0 (z) = 3(z)p = sine of local angle between S-wave

ray and vertical (le)

W'(z) = a(z)/cos 0 (z) = local vertical P-wave velocity (if)

6'(z) = 3(z)/cos 0 (z) = local vertical S-wave velocity. (lg)
S
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We also define the vector

uX(t,x,z)

u (t,x,z)
z

J(t,x,z) = (2)

T zx(t,x,z)

T (t,x,z)

where u and u are the horizontal and vertical components of the
x z

displacement and where T and T are the horizontal and vertical
zx zz

tractions on an element perpendicular to the z axis.

An impulsive plane wave b06(t-px-qz) is used to probe the elastic

medium. Here 6(-) denotes the Dirac delta function, and q is the vertical

ray parameter just below the surface (for a free surface), or in the

homogeneous half-space above the medium. The Fourier transform of this

plane wave is (b0 exp-jwqz)exp-jwpx. Since the horizontal ray parameter p

is independent of depth, we may write the Fourier transform of the vector

(2) for z>0 (inside the medium) as

g(w,x,z) = f(w,z)exp-jpx .(3)

From Aki and Richards (1980, p.269), the propagation of seismic

waves in an inhomogeneous, layered, continuous elastic medium is described

by

af/9z = A(z)f(W,z) (4)
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where

O -jwp 1/i1 0

--jOpX%/(X+21i) 0 0 1/(X+21p)

A(z) =

4 2p2 (X+p)/(+21p)-pw2 0 0 -jwpX/(X+21P) (5)

O -p2 -jwp 0

In the next section we diagonalize equation (4), defining upgoing

and downgoing P and SV waves. Appropriate weightings of the eigenvectors of

A(.z) will be necessary to put equation (4) into a form suitable for a

fast algorithm.

TRANSFORMATION OF THE PROPAGATION EQUATION

It is well-known (e.g. Claerbout (.1968)) that changing variables

in equation (4) from f(w,z) to R(z)f(W,z), where R(z) is the matrix of

row eigenvectors of A(z), diagonalizes equation (4) into upgoing and

downgoing waves. In the present context it will be necessary to weight

the row eigenvectors of A(z) in order to obtain a recursive algorithm.

Thus we define

w(W,z) = X(z)R(z).f(W,z) (6)

where .X is a diagonal matrix whose elements weight the row eigenvectors

of A(z). We may then write

-l -l~ -1^
f(,w,z) = R X w(W,z) = CX w(W,z) (7)

where C(z) = R(z) is the matrix of column eigenvectors of A(z).

Taking the partial derivative of equation (7) with respect to z and
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premultiplying by XR yields

w/9z =- [A- (X(R9C/9z)X- 1 + X(p/z(X ))3]w (8)

where

f = RAC = diag[-jw/a', -jo/l'., jw/a', j&/l']. (9)

We now choose the elements of the diagonal matrix X so that the (diagonal)

term X9/Dz(X ) = - (9/9z)log jXI zeroes the diagonal elements of

-1X(R9C/3z)X , This is straightforward, and the result is

X = diag[(ap cos 8 )/2 (p cos )1/2 (p cos:0 1/2 (up os /2
p s -S

(10)

We recognize the components of X as the square roots of the P-wave and SV-wave

impedances. Hence weighting the components of Rf by these quantities normalizes

the energy fluxes moving upwards and downwards.

Inserting equation (10) in equation (8) results in

-jw/a' -t -r -r
c p c

t -jow/ ' -r -rc c s

Dw/ =z w (11)
-r -r jw/a,' -t
p c

-r -r t ji/L'
c s c

where

r (z) = (1/2-2 2p2 ) (D/9z)log p(z) - 4 2p2(9/Dz) log 1(z)

+ 1/(2-2a2p2 ) (D/fz) log a(z) (12a)



r (z) = -C(p/2) (C'2 ')1/ 2 ((l-2(32p2 + 23 2 /,',') (a/Dz)log p(z)

-(4a2p2 - 482/' ' ) (/a z) log $(z)) (12b)

r (z) = -(1/2 - 23 p ) (D/az) log p(.z)

-(1/7(2-2 2p2 ) - 4(2p2 ) (3/3z) log 6(z) (12c)

t (z) = (p/2) (a'1')/2((1-232p2 - 2(2/ac'') (a/az) log p(z)
c

-(4(2p2 + 4 2/ f'i)) (D/Dz) log 6(z)) (12d)

and the quantities in equations (12) have the following interpretations:

r (z) = reflection coefficient for a reflected P wave
P generated by a P wave;

r (.z) = reflection coefficient for a reflected wave generated

by a wave of the opposite type;

r (Cs) = reflection coefficient for a reflected SV wave generated
by an SV wave;

t (z) = transmission coefficient for a transmitted wave generated

by a wave of the opposite type.

We have used here notations similar to those of Chapman (1974) and

Kennett and Illingworth (1981). The physical meaning of the reflection

coefficients is illustrated in Figure 1, which describes an infinitesimal

section of a lattice filter structure which implements the elastic wave

equation (11). Note that the elementary delay elements D = exp - jiA/a' (z)

and D exp -jA/'(z) appearing in Figure 1 vary with depth. The

lattice structure of Figure 1 can be viewed as a -generalization of lattice

filters used in speech processing (Markel and Gray, 1978) and linear

estimation theory (Makhoul, 1977).
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In the next section we use the transformed equation (11) to obtain

a fast inversion algorithm.

INVERSION ALGORITHM

Recall that the first experiment consisted of probing the medium

with a planar impulsive P wave. Since the first component of w(L,z)

corresponds to a downgoing P wave, we may write its inverse Fourier

transform w(t,z) as

b 6(t- [(Z))w-(t,z)

w(Ct,z) 0= ! + , z) -u(t - T (z)) (13)

W 0 tZ) P

0 w4 (t,z)

where
z

T (z) = f dZ/a' (k) (14)
p 0

denotes the vertical travel time for P waves, and

1 for t>0

u (t) = (15)

0 for t<O0

is the unit step function. The second term in (.13) reflects the causality

of the excitation: There can be no wave at depth z until the excitation

has had time to reach depth z.

Taking the inverse Fourier transform of equation (11), inserting

the expression (13), and equating coefficients of 6(t-T ) yields

r (z) = 2w3( CT (z),z)/(a'(z)b ) (16a)

r (z) = w 4( p(Z)Z)(l/' (z) + l/' (z))/b , (16b)
C ( 4pp
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Now, for the second experiment, the excitation is a downgoing,

impulsive SV wave. Since the second component of w(t,z) corresponds to

such a wave, we have for this experiment

o w (t,z)

w(t,z) = b 6(t-T (z)) + w (t,z) (17a)
s s 2

w3 (t,z)

o ° w4 (t,z)

where the waves w. (t,z) have the form

wi(t,z) = ni(t,z)u(t-p (z)) + qi(t,z)u(t-T (z)) (17b)

and where the vertical travel time for SV waves has been defined as

T (z) = O d/' (,) (18)

Note that the form of equation (17) differs from that of equation

(13). This is because in the SV experiment the impulsive excitation (an

SV wave) does not coincide with the wavefront (a P wave). In the P experiment

both of these were P waves and hence coincided.

Proceeding as above, we obtain (qi(z) is defined in equation (17b))

rc (z) = q3 (Ts(z)z) (1/a'(z) + 1/' (z))/b s (19a)

r (z) = 2q 4CT (z),z) / (3' (z)b) . (19b)

The importance of equations (16) and (19) is that they permit computa-

tion of the reflection coefficients at any depth provided the waves w(t,z)

are known at that depth.
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Next, equations (12a-c) are written as a matrix equation:

~r p (,z)- .(~3/Dz) log p(z)-

r c(z = M(z) (9/az) log F(z) (20a)

r S(z) [ (/az) log a(z)

where

1/ 22 2 ' -42 2 1/(2-2a22p2)
-1/2 - 2 2p2

M(z) 2= -Q(1-22p + 2 2/a'f' ) 2(42p2 4 2/4 ' ' ) 0

-(1/ 2 2p2 -(1/(2-2 2p2)-4r2p 2 ) 0

(20b)

A 1/2
with Q(z) = (p/2)(U,,a') / Inverting this equation gives

[(/z)1 log p (Z)Y r (z)

(D/z) log ~(Iz) = N(z)/m(z) rs(z) (21a)

(/Dz), log a(z)J (z

where

-(1/(2-282p 2) - 432p2 ) -_(432p 2 - 4 S2/cO') 0

N(z) = 1/2 - 2 2p2 - (1- 2 2 + 2 2/p'2 ') 0

22 22

22 -4p)(4(1- l2p2) ( 2p2 + 2/a',',) 2m(l -a p)
2(1- 2p2 )

(21b)

and

A 2 2
m(z) = (det M(z))(2-2a p

Q= (1/2 - 3p2 - 32/ +' ' + 2 4p4 + 2 4p2/a'c')/(1-22p2 ) . (22)
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Equations (211 function as update equations for p(z), ~(z), and a(z).

Note that p(z) and 6(z) are updated solely from r (z) and r (z), and
C S

then r (z) is used to update a(z). From these three parameters, any

other parameter of interest (e.g. A(z) and p(z)) may be quickly found.

Chapman (1974, p. 67) gives equations similar to equations (20); however,

Chapman's equations involvetoo many quantities (i,p,B,a', and 3') and

require the unobservable transmission coefficient t . Thus, they are un-

suitable as update equations.

We have now specified all of the equations of the algorithm, in

differential form. The algorithm consists of equation (11), twice

(one for the experiment involving excitation by P waves; one for excitation

by SV waves) for updating the up- and down-going waves; equations (16) and

(19) for computing the reflection coefficients; equations (21) and (22)

for updating the material parameters p(z), B(z), and a(z); and equation (12d)

for computing the transmission coefficient t (z) required to complete the

matrix in equation (11). We then immediately have, for each z,

P(z) = B2(z)p(z) (23a)

(z) = (a2(z) - 2 2 (z))p(z). (23b)

Next, the algorithm is discretized in order to clarify the recursions

and specify in what order quantities should be computed.

Discretization

The depth coordinate z is discretized by z=nA, where n is a positive

integer and A is the discretization length. The time coordinate t is similarly

discretized by t = mAt, where At is the discretization time.
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Initialization

It is assumed that all material parameters (, 1i, p, and hence

a, 3, a', and f') are known at the earth's surface. Since we are assuming

a free surface, the waves at the surface are determined by measuring the

velocity components over time, for both the P and SV experiments.

Recursion

We start off with knowledge of a(z), 6(z), p(z), ' (z), 63'(z) as

well as that of all up- and down-going waves at depth z, from the previous

iteration. Let wP(t,z) represent the waves in the P-wave source experiment,

and w (t,z) represent the waves in the S-wave source experiment. For

convenience, we identify the dimensionless quantities

2 2 2
B(z) = 2(z)p = sin 2 (z) (24a)

(24b)G(z) = 6 (z)/a'(z)f'(z) = (1/2)sin 20 cot . (24b)
s p

Then, taking the inverse Fourier transform of equation (11) and employing

a simple Euler-Cauchy approximation to the various derivatives in the

differential form of the algorithm yields the following recursive

algorithm:

1) Computation of the reflection coefficients. From equations (16) and

(19),

rp(Z) = 2P 3(T (z), z)j/b A) (25a)
.. p .u p

rc(z) = 2w4 ( p (z), z)/[b A) (25b)
p 5

r (z) = 2(w4( (z) ,z)- w(4T (z),z))/ (2c)

where b = b ' (z)/A and b = bs' (z)/A are the strengths of the discretized

continuous impulses.continuous impulses.
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Upon going from continuous time to discrete time, the continuous-time

impulse bid6(t) becomes a discrete-time impulse of hight bi/Di, where Di is the

differential delay time at depth z for wave type i (see Fig. 1). Since the impulse

has been spread out over the time interval Di, its height must be bi/D i in

order to maintain its area b., For a P+P reflection D = A/ ' (z). For a P4-S
1 p

reflection the two-way delay is D + D , hence the one-way delay is half of this,

or (A/2)(l/a' (z) + 1/B'(z)). Equations (16) and (19) are thus modified to eq. (25).

2) Computation of auxiliary quantities. From equations (22) and (24),

B(z) = 2(z)p2 (26)

G(z) = 2 (z)/a'(z)' (z) (27)

m(z) = (1/2 - 3B - G + 2B2 + 2BG)Z/(l-B) (28)

t (z) = - £(1/2 - 3B + G + 2B2 - 2BG)r (z)/((l-B)m(z))
c c

+ 2Br (z)/m(z) (29)

where k(z) is defined as above.

3) Update of material parameters. From equations (21),

p(z+A) = p(z) - p(z)((l/(2-2B) - 4B)r (z) + 4k (B-G)r (z))A/m(z)

(30)

B(z+A) = 3(z) - 3(z)((2B-1/2)r (z) + Z(1-2B+2G)r s(z))A/m(z) (31)

a(z+A) = a(z) + c(z)(l-a (z)p2) (2r (z) - ((2B-1/2)/(1-B)m(z))r (z)
p c

- k(4(B+G)/m(z))r (z))A (32)

a (z+A) = a(z+A)/(l-a2 (z+ A)p /2 (33)

' (z+A) = M(Z+A)/(l-2 (z+ A)p2)/2 (34)

4) Wave update. From the inverse Fourier transforms of equation (11),

wl(t+A/a'(z), z+A) = wl(t,z) - (t (z)w2(t,z) + r (z)w3(t,z)

+ r (z)w4(t,z))A (35a)
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w2(t+A/' (z), Z+A) = w2(t,z) - (-t (Z)w (t,z) + r (z)w3(t,z)

+ r (z)w4(t,z))A (35b)

w3(t-A/a' (z), z+A) = w3 (t,z) - (r l(tz) + r (z)w2(t,z) + r (z)w (t,z)

+ tc(z)w4(t, z)) (35c)

w4(t-A/' (z), z+A) = w4(t,z) - (r c(z)w (t,z) + r s(z)w2(t,z)

- t (zw t,z)) (35d)
c 3

and these same recursions are used for both wP(t,z) and w (t,z).

At this point, we have obtained p(z+A), a(z+A), 3(z+A), a'(z+A)

3' (z+A), and all eight waves at depth z+A. Hence the recursion is

complete. Each step in the recursion can be implemented as one stage or

section offaladder-type filter, which can be regarded as a more complex

version of the lattice filter commonly encountered in spectral estimation

theory. A typical section of this ladder filter is illustrated in Figure

1. The downgoing P and SV waves at depth z enter the filter section

at the upper left, interact with each other, are reflected (due to the

inhomogeneity of the medium), and exit at the upper right, now at depth

z+A. Upgoing P and SV waves undergo a similar experience in the lower

half of the filter. Note how this filter illustrates the physical meaning

of the reflection coefficients r (z), r (z) and r (z), and of the
p c s

transmission coefficient t (z).
c

The recursions of the waves in z and t, given by equations (35),

are slightly complicated, so the recursion patterns are illustrated in

Figures 2a and 2b. We start off knowing the waves at depth z for all
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time, and wish to find the waves at depth z+A. Although the simultaneous

time and depth updates may make it seem as though information at early

times is being lost, recall that by causality there can be no wave at depth

z until the initial excitation has had time to reach depth z. Thus there

is no information to lose at the early times.

The algorithm that we have described above for reconstructing p (z),

X(z) and p(z) works even if some turning points exist for the P and SV

waves propagating through the elastic medium. However, in this case

p, X and p can only be reconstructed up to the depth z where the ray

path for the P wave becomes horizontal. Note that along rays associated

with the P and SV waves

sin G (z)/a(z) = sin 0 (z)/3(z) = p = constant (36)

so that unless acz) < 1/p for all z (in which case we have also 6(z) < l/p),

the angle 0 (z) will become imaginary at some depth z . Physically, this
p p

situation results in evanescent waves where the waves decay exponentially

with depth. This causes no problem in the reconstruction algorithm until

z-z ,, at which point U' (z) + a. Then, the waves wP(z,t) and w (z,t)

cannot be propagated further, and the material parameters are reconstructed

only up to depth z .

PHYSICAL INTERPRETATION OF THE ALGORITHM

The basic principle behind the algorithm is the concept of layer-

stripping, which is discussed in Bruckstein, Levy, and Kailath (1983).
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At each depth the downgoing and upgoing waves are being scattered (i.e.,

reflected and transmitted) due to the varying material parameters. By

including an impulse in the initial excitation, the reflection coefficients

may be measured, since the impulse is an easily recognizable tag. The

reflection coefficients are then used to update the material parameters

at that depth. When another infinitesimal layer is identified it is

"stripped away", and the next layer is examined in the same manner.

The layer-stripping algorithm is closely related to the dynamic

deconvolution algorithm, which is commonly associated with inverse

acoustic problems (Robinson, 1982; Yagle and Levy, 1983;. Bube and

Burridge, 1983). Both algorithms employ up- and down-going waves being

scattered by an inhomogeneous medium with the material parameters

determined from reflection coefficients. However, layer-stripping

algorithms may take a wide variety of forms, while dynamic deconvolution

is generally associated with a specific form -- the Schur algorithm.

The waves(elements of wl used in:the algorithm are, in the Fourier

transform domain

1/2 - 1/2"
T /Z 1 + jWz U1 (37a)

1/2 - 1/2 
Ts/Z s + jWZs U (37b)

where the upper sign is used for upgoing waves and the lower sign for

downgoing waves, the impedances Z and Z are defined by
p s

Z (z) = a(z)p(z) cos 0 (z) (38a)
P P

z (z) = 3(z)p(z) cos s(z) , (38b)

A A A A

and T , T , U and U are the stresses and displacements along the ray path
P s p s

for P waves, and perpendicular to the ray path for SV waves.
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This shows that the up- and down-going waves have been normalized

at each depth, so that the energy in a wave is the square of its amplitude,

regardless of the medium around it. This preserves the equality of

incoming and outgoing energy fluxes in any region. Note that in a homogeneous

medium the waves (37) become simply the energy-normalized velocities, which

were the state variables used by Shiva and Mendel (1983) for a discrete

(each layer is homogeneous) layered elastic medium.

It should also be noted that if the medium is discretized, i.e.

modelled as a welded stack of thin, homogeneous layers with material

parameters varying only between different layers, then ROC/az may be

interpreted as a scattering matrix for the layer at depth z. To see

this, replace (~/Dz) log p(z) = (a/Dz)/p(z)/p(z) by the discrete approxi-

mation Ap(z)/p(z), and do the same for 6(z) and a(z). Then equations

(12) become the reflection and transmission coefficients at an

interface (Aki and Richards, 1980, p. 153). Thus discretization of the

algorithm is equivalent to a physical discretization of the medium.

RESULTS OF A COMPUTER RUN OF THE ALGORITHM

The algorithm was tested by running it on the synthesized

impulse response of a twenty-layer medium. The variation of medium

parameters from one layer to another was made small (around 2%), in

order to simulate a continuous layered medium. This is important, since

the differential updates assume a continuously varying medium; the algorithm

cannot handle sharp changes in medium properties unless the step size A is

made smaller in such regions. The medium velocities and step size A were

scaled down by a factor of 1000, so A = 0.lm instead of 100m.
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The response of the medium to impulsive plane P and SV waves was generated

in the frequency domain using the reflectivity method (Aki and Richards, 1980,

p. 393). A FORTRAN program given by Kind (1976) was used to compute the plane

wave transfer functions R , R , and R at 512 frequency points (integer
pp s ss

multiples of 0.78 Hz). Each of these was divided by j2wf and a discrete inverse

Fourier transform taken. This synthesized sample stee responses; taking diffe-

rences and dividing by the discretization time At = 0.005i. yielded the

discretized impulse responses. It should be noted that careful attention must

be paid to signs in going from potential reflection responses to velocity

reflection responses; see (Aki and Richards, 1980, p. 191).

The impulse responses, scaled by l/At for convenience, are plotted in

Figure 3. Although the responses were computed for t = 0 up to t = 2.565

to avoid aliasing problems, the responses beyond t = 1.3s were essentially

zero and are not shown. Note that the peaks corresponding to strong primary

reflections are smeared out. This is due in part to the use of a DFT, which

in this case is tantamount to bandpass-filtering the data with a filter with

pass band 0.78 Hz - 400 Hz. Since the strengths of the primary reflections are

especially important to the algorithm,this smearing might be expected to hamper

its performance. However, this evidently did not happen.

The impulsive plane wave responses were then used to initialize the

upgoing P and SV waves, and the algorithm was run on a VAX711/782 computer.

Results are shown in Figure .4 It can be seen that the agreement between

the actual and algorithm-generated medium parameter profiles is quite good,

with less than 5% error everywhere.

It should be noted that the algorithm was not tested under perfect con-

ditions. Bandlimiting of the frequency response resulted in the time response

being smeared over two or three samples, and the medium itself was discrete,

so that some error may be expected in the update equations. Nevertheless,
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the algorithm performed quite well. Small amounts of additive noise in

the data may be handled by running the algorithm concurrently at several

different values of the stacking parameter p, averaging the updated medium

parameters at each depth, and using these averaged updates in the algorithms.

Sharper variations in the parameter profiles could be handled by temporarily

reducing the step size A if the reflection coefficients get too large; this

would also reveal the sharp variation in more detail. These possibilities

are subjects of current research.

CONCLUSION

A fast algorithm for recovery of material parameter profiles as

functions of depth for the case of seismic wave propagation through

a continuous elastic medium has been given. The algorithm has been specified

both in differential form and in a simple discretized version that details

its recursive nature. The algorithm works on a layer-stripping principle,

and appears to be much faster and easier computationally than previous

solutions to the inverse seismic problem for an elastic medium. A physical

interpretation of the algorithm was also discussed in terms of a lattice

filter concept showing how the first reflection of various wave types at each

depth yields the medium reflection coefficients at that depth, from which

the medium parameters at that depth can be differentially updated to the

next depth. Results of a computer run of the algorithm on the impulsive

plane wave response of a twenty-layer medium show that the algorithm works

satisfactorily.
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More work needs to be done in investigating the speed, stability,

and performance of this algorithm on real-life data. The effects of

noise and modelling errors on this algorithm should also be the subject

of further research.
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tj i \NW (ZO) W1(ZO+A)

t w 1 (zo)w1(zo+A)

X,'sIope= /ca'(zo)I I -,O zo zo+A ZFIG. 2a
Recursion pattern for updating the downgoing waves.

t w w 3(zo)w 3(z o +A)

./,'-slope = 1/a'(zo)

.. ~. | ".<sloPe =-1/a'(zo)

0 z o zo+A Z

FIG. 2b

Recursion pattern for updating the upgoing waves.
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